文章编号: 0253-2239(2009)10-2692-06

# 非零色散位移光纤的改进设计及制造

吴金东<sup>1,2</sup> 吴兴坤<sup>1</sup> 卢卫民<sup>2</sup> 吴海港<sup>2</sup> 张立永<sup>2</sup> 黄晓鹏<sup>2</sup> (<sup>1</sup>浙江大学现代光学仪器国家重点实验室,浙江杭州 310027 <sup>2</sup>浙江富通光纤技术有限公司,浙江 富阳 311422</sub>)

**摘要** 介绍了一种新颖的非零色散位移光纤结构设计方法及其 MCVD+OVD 制造工艺,所制备的光纤有效面积 达到 71 μm<sup>2</sup> 以上。采用关键结构区域精确微扰方法,改进了光纤的色散特性,1550 nm 处色散斜率由 0.0715 ps/(nm<sup>2</sup> • km),分别减小至0.0605 ps/(nm<sup>2</sup> • km),0.0466 ps/(nm<sup>2</sup> • km),零色散波长由1500 nm 附近移 至1450 nm 以下。测量表明,所得光纤具有优越的光学传输特性、抗弯曲性能和熔接性能,适用于 C+L 和 S+C+ L 工作波长的大容量高速率长距离密集波分复用系统。光纤关键结构区域精确微扰是改进光纤性能的一种有效 方法,该方法不限于 MCVD 工艺和非零色散位移光纤,对新型光纤的设计和生产具有积极的指导意义。

关键词 光纤光学;非零色散位移光纤;结构区域微扰;色散斜率;大有效面积

中图分类号 TN253 文献标识码 A doi: 10.3788/AOS20092910.2692

## Improved Fiber Design and Fabrication of Non-Zero Dispersion-Shifted Fibers

Wu Jindong<sup>1,2</sup> Wu Xingkun<sup>1</sup> Lu Weimin<sup>2</sup> Wu Haigang<sup>2</sup>

Zhang Liyong<sup>2</sup> Huang Xiaopeng<sup>2</sup>

<sup>1</sup>National key laboratory of modern optical instruments, Zhejiang University, Hangzhou, Zhejiang 3100272, China <sup>2</sup>Zhejiang Futong Optical Fiber Technology Limited Company, Fuyang, Zhejiang 311422, China

**Abstract** A novel design of non-zero dispersion-shifted fiber and its fabrication by MCVD + OVD process are presented. An effective-area of greater than 71  $\mu$ m<sup>2</sup> is obtained for the designed fiber. Dispersion characteristics is improved by reducing 1550 nm dispersion slope from 0.0715 ps/(nm<sup>2</sup> • km) to 0.0605 ps/(nm<sup>2</sup> • km)or 0.0466 ps/(nm<sup>2</sup> • km), while zero dispersion wavelength was shifted from 1500 nm to 1450 nm. Experimental measurement indicates that the fabricated fiber has an excellent optical transmission property with a excellent macro-bending and splice performance, suitable for high-speed long haul dense wavelength division multiplexing systems in C+L or S+C+L bands. This innovative design procedure utilizes accurate perturbation algorithm for fine adjustment of key-part of fiber configuration, the method is not limited to MCVD process and non-zero dispersion-shifted fibers, but also can be applied for the development of specialty fibers.

Key words fiber optics; non-zero dispersion-shifted fiber; perturbation of configuration; dispersion slope; large effective area

1 引 言

语音、数据、图像等信息业务的迅猛发展对光传 输网络的传输容量和速率提出了越来越高的需求, 不断降低网络建设投资和运行维护成本,还是网络 运营商利益决策的关键因素。从技术和经济角度, 密集波分复用(DWDM)是广泛采用的解决宽带增 长的技术方案,通过提高单信道的传输速率以及增 加传输信道与工作波长增大传输容量<sup>[1]</sup>。在 DWDM系统中,色散容限与传输速率平方成反比减 小,光信噪比与传输速率成正比增加,因此,色散与

**作者简介**:吴金东(1968—),男,博士研究生,主要从事新型光纤的设计与制备等方面的研究。 E-mail:wid3699@sina.com

导师简介:吴兴坤(1964—),男,教授,博士生导师,主要从事光通信技术与器件等方面的研究。

E-mail: xingkunwu@163.com

收稿日期: 2008-11-10; 收到修改稿日期: 2009-03-09

偏振模色散、非线性效应已成为限制光纤远距离传输的主要因素<sup>[2]</sup>。随着单信道传输速率向 40 Gb/s 甚至更高发展,以及信道数的成倍增加、信道间隔的 减小,精确控制系统的积累色散、减小非线性效应是 提高传输容量和距离的关键<sup>[3,4]</sup>。

非零色散位移光纤是适用于 DWDM 传输技术 而发展的光纤<sup>[5]</sup>,在长途 DWDM 传输系统中,由于 色散斜率的作用,各通路的色散积累量是不同 的<sup>[6,7]</sup>,为解决色散与偏振模色散、非线性效应相关 的各种问题,在实际应用中需采用复杂的色散补偿、 优化调制格式等技术<sup>[8~10]</sup>,增加了系统成本。降低 色散斜率,优化工作波段色散的平坦性,减小光纤的 相对色散斜率(RDS),对降低传输系统的色散补偿 代价,增加传输容量和距离十分有利<sup>[11]</sup>。此外,纤 芯的有效面积是决定光纤非线性效应的关键因素, 增大纤芯有效面积有利于减小光纤的非线性效应, 但过大的有效面积对系统会有负面的影响。

近年来,非零色散位移光纤的设计研究非常活 跃。光纤的色散斜率和有效面积存在一定矛盾,很 难得到色散斜率和有效面积两者同时最优的光纤设 计,一般都是在二者之间进行折中考虑<sup>[12]</sup>,如获得 大的有效面积则牺牲色散斜率。国内外光纤生产企 业已开发了具有不同特性的非零色散位移光纤(符 合 ITU-TG.655/656 规范)。从骨干网到城域网 的 DWDM 传输网络中,这些非零色散位移光纤已 经大量应用。然而,随着未来各种新型光传输网的 发展与设计建设,开发新型非零色散位移光纤,获得 大的有效面积、较低色散斜率和优化的色散,将工作 波长从 C+L 波段拓展为 S+C+L 波段,是非常有 价值的课题。

介绍一种非零色散位移光纤结构设计方法及其 MCVD+OVD制作工艺,所制备的光纤同时具有大 有效面积和低色散斜率的特点。通过光纤结构关键 区域精确微扰,将光纤的工作波长从C+L波段拓 展到S波段,对光纤的光学特性、色散斜率补偿效率 和熔接特性进行了详尽的实验研究。

### 2 光纤设计与制备

有效面积、色散(包括偏振模色散)和色散斜率, 以及零色散波长是 DWDM 系统中光纤的重要参数,本设计旨在保证光纤与目前大量应用的非零色 散位移光纤具有相当的光学特性,并把低偏振模色 散、良好抗弯曲和熔接性能纳入光纤的结构设计中, 再结合 MCVD 工艺能精确控制折射率分布和材料 组成的技术优点,对影响光纤性能的关键结构进行 精确微扰加以改进,以获得优化色散性能与工作波 长的新型非零色散位移光纤。

获得大的纤芯有效面积的折射率剖面结构有多 种设计[13,14],其主要特征可概括为纤芯突出和芯部 中心凹陷两种模型,结构如图1所示。多包层结构 具有波导色散设计灵活的优点[15,16],芯部中心凹陷 结构容易增大有效面积[17,18],但考虑与现实中大量 采用的非零色散位移光纤兼容,同时兼顾预制棒制 造中结构参数的工艺控制,提高产品的一致性和合 格率,提出一种非零色散位移光纤折射率剖面模型, 结构示意图如图 2。光纤结构为六个分层,即构成 光纤芯部的 core1, core2 以及构成光纤包层的 clad1, clad2, clad3 和外包层 clad4。core1 折射率为 阶跃分布, core2 折射率随半径变化(等同于线性或 者抛物线), clad1, clad2, clad3 折射率为阶跃分布, clad4 为纯的二氧化硅玻璃包层。采用微分迭代解 法[19]模拟计算光纤的色散性能,结果表明,通过构成 光纤芯部的  $R_1, \Delta_1$  与  $R_2, \Delta_2$  及其变化曲线,可以获得 光纤设计目标的色散和有效面积等性能,通过 clad1 的 $\Delta_3$  调整色散斜率,通过 clad2 的 $\Delta_4$  和  $R_4$  调整光纤 的弯曲性能,通过 clad3 的  $\Delta_5$  可调整光纤的截止波



图 1 二类大有效面积光纤折射率剖面结构示意图 Fig. 1 Two schematic diagrams of refractive index profile for large effective area fibers



图 2 新制备光纤的折射率剖面结构 Fig. 2 Prototype refractive index profile of fabricated fibers

长。core2 这一结构设计的优点在于不但获得所设计 的光学特性,而且有利于玻璃材料粘度匹配,优化光 纤偏振模色散,改善衰减和熔接等性能。

以图 2 结构为原型,设计一种大有效面积光纤。 先使用理论模拟计算出基本的结构参数,再经过实 际光纤拉丝验证,取得一系列典型的结构参数,所得 光纤的光学特性(编号样品 1<sup>#</sup>)与目前广泛采用的 大有效面积光纤一致(参照样品 0<sup>#</sup>)。然后以所得 的结构参数为基础,对结构 corel, core2 以及 clad1 进行精确微扰改进光纤的色散特性。光纤波导色散 来自于光纤中基模场分布随波长的变化[20]。改进 光纤色散特性,需要从改变模场的分布着手,在反复 的设计和测试过程中寻找对色散特性较为敏感的参 量,并对其进行精细调整。如图 3 所示,对 corel 中 心区域进行蚀刻形成适当的凹陷 core3,调整 core2 分布曲线,调整 clad1 的Δ3 及其与相邻区域的过渡 等,改进光场能量在光纤芯包层中的分布,从而降低 色散斜率,并将零色散波长调整到1450 nm 以下, 而工作波长也从 C+L 拓展到 S 波段。显然,实际 所得效果的关键在于对微扰部分的精确控制。采用 的一组典型结构参数见表 1,表中相对折射率  $\Delta_i =$  $(n_i^2 - n_c^2)/2n_i^2$ , n<sub>c</sub> 是外包层的折射率。模拟计算 1550 nm 波长的色散值为 4.74 ps/(nm • km),相应 色散斜率为 0.0735 ps/(nm<sup>2</sup> • km)。





表1 制备的光纤结构参数典型值

| Table 1 | Typical | structure | parameters | of | the | fabricated  | fibers |
|---------|---------|-----------|------------|----|-----|-------------|--------|
| rabic r | rypica  | Structure | parameters | O1 | unc | rabilicateu | motis  |

| • •       | -     |                          |                      |
|-----------|-------|--------------------------|----------------------|
| Structure | Part  | $\Delta_i / \frac{0}{0}$ | $R_i \ / \mu { m m}$ |
|           | core1 | 0.60                     | 3.6                  |
| core      | core2 | 0.40                     | 7.4                  |
|           | clad1 | -0.05                    | 12.6                 |
|           | clad2 | 0.23                     | 18                   |
| clad      | clad3 | -0.08                    | 20                   |
|           | clad4 | 0                        | 125                  |

采用 MCVD 工艺制备光纤芯棒,沉积管为外径 36 mm, 壁厚 2 mm, 长度 1200 mm 进口合成石英 管,通过设计每层的沉积厚度和材料组成实现折射 率剖面的控制和玻璃粘度的匹配,列于表1的各结 构层的材料组成和工艺配比见表 2。芯棒外径约 18.7 mm,表面约 0.4 mm 的富羟基层用氢氟酸蚀 刻去除,然后采用 OVD 工艺制备外包层,沉积速率 为 35 g/min, 烧 结 脱 水 后 所 得 预 制 棒 外 径 约 80 mm。试验中光纤拉丝速度 1200 m/min,拉丝张 力 195~210 g。基于 MCVD 工艺的特点,可以获得 物理尺度和折射率分布(refractive index profile)结 构的精确控制,如 core2 的折射率变化,通过按照其 变化控制 GeCl<sub>4</sub> 的载料 O<sub>2</sub> 流量,降低反应物流量 减小沉积厚度来实现,对于 core3 的  $R_3$  和  $\Delta_5$ ,则可 通过 SF<sub>6</sub> 或者  $C_2F_6$  流量和反应温度来控制, 而光 纤其它结构分层可通过适当提高反应物流量增加沉

积厚度,减少总的沉积层数提高生产效率。

表 2 制备的光纤沉积条件典型值

Table 2 Typical deposition conditions for the fabricated fibers

| Part  | Composition | Gas flow ratio | Passes |
|-------|-------------|----------------|--------|
| corel | Si,Ge       | 1:2.8          | 2      |
| core2 | Si,Ge       | 1:0.3~1.8      | 16     |
| clad1 | Si,Ge,F     | 1:0.3:0.02     | 4      |
| clad2 | Si,Ge       | 1:0.5          | 5      |
| clad3 | Si,Ge,F     | 1:0.1:0.02     | 3      |

#### 3 结果与讨论

按照表1结构参数所制备光纤的光学传输性能 见表 3,其中 2<sup>#</sup>,3<sup>#</sup> 样品为结构精确微扰所获得的 光纤,0<sup>#</sup>光纤为作参照的大有效面积光纤(商品)。 1\*光纤的光学特性与0\*光纤相当一致,其纤芯有 效面积为 72.3 µm<sup>2</sup>,在 1550 nm 波长处的色散斜率 为 0. 0715 ps/(nm<sup>2</sup> • km), 稍 优 于 0<sup>#</sup> 光 纤 的 0.0769 ps/(nm<sup>2</sup> • km),1<sup>#</sup> 光纤结构上的一项改进 为,通过降低  $\Delta_3$  (clad1), $\Delta_1$  (core1)减小为 0.60%, 优点是减少纤芯 Ge 的掺杂浓度, 而  $0^{*}$  光纤的  $\Delta_1$  实 测值为 0.67%。2#,3# 光纤的纤芯有效面积为  $72 \ \mu m^2 \pi 71 \ \mu m^2$ ,1550 nm 波长处的色散斜率分别 降到 0.0605 ps/(nm<sup>2</sup>·km), 0.0466 ps/(nm<sup>2</sup>·km), 在以往同类型大有效面积光纤中,这样的色散斜率 未见报道过。图 4 为光纤色散系数对波长的曲线 图,1<sup>#</sup> 光纤零色散波长小于 1500 nm,说明 1<sup>#</sup> 光纤 支持 C+L 波段的密集波分复用传输系统。2#,3# 光纤零色散波长都小于 1450 nm。1460 nm 的色散 分别为 1.500 ps/(nm•km),0.996 ps/(nm•km), 表明光纤不但在 C +L 波长满足密集波分复用传 输系统,而且 S 波段也支持 DWDM 系统。从图 4 可以看出,3<sup>#</sup>光纤的色散在长波长段更加平坦,属 于部分色散平坦光纤。三种光纤都具有70 μm<sup>2</sup>以 上的纤芯有效面积,说明光纤能够有效地减少非线 性效应,且色散斜率都有所降低,改善了色散平坦 性。2<sup>#</sup>,3<sup>#</sup>光纤的零色散波长移到1450 nm以下, 1550 nm 的色散则适当增大到约7 ps/(nm•km), 能更有利于抑制四波混频(FWM)、交叉相位调制 (XPM)等非线性效应,因此光纤可以承载更多的信 道。显然,三种光纤都适合大容量高速率的密集波 分复用传输干线网和城域网。

表 3 制备的光纤与常规大有效面积光纤传输特性典型值

| Table 3 | Typical | transmission | characteristics of | of the | fabricated | fibers & | conventional | large | effective area | fiber |
|---------|---------|--------------|--------------------|--------|------------|----------|--------------|-------|----------------|-------|
|---------|---------|--------------|--------------------|--------|------------|----------|--------------|-------|----------------|-------|

| т.                                             | Wavelength |        | Fabricated fibers |        | Conventional              |
|------------------------------------------------|------------|--------|-------------------|--------|---------------------------|
| Item                                           | /nm        | 1 #    | 2 #               | 3 #    | leaf fiber 0 <sup>#</sup> |
|                                                | 1460       | -1.960 | 1.500             | 0.996  | —                         |
| D'a anti-                                      | 1530       | 2.995  | 5.748             | 6.010  | 2.720                     |
| Dispersion                                     | 1550       | 4.425  | 6.969             | 7.089  | 4.222                     |
| /[ps/(nm•km)]                                  | 1565       | 5.506  | 7.884             | 8.006  | 5.399                     |
|                                                | 1625       | 9.847  | 11.624            | 9.618  | 9.958                     |
| Ds /[ps /(nm <sup>2</sup> • km <sup>1</sup> )] | 1550       | 0.0715 | 0.0605            | 0.0466 | 0.0769                    |
| $\lambda_0 / nm$                               | _          | 1487   | 1435              | 1445   | 1495                      |
| MFD $/\mu m$                                   | 1550       | 9.7    | 9.6               | 9.5    | 9.6                       |
| $A_{ m eff}/\mu{ m m}^2$                       | 1550       | 72.3   | 72                | 71     | 72                        |
| $A_{ m eff} 	imes D_{1550}$                    | 1550       | 319.9  | 501.8             | 503.3  | 304.0                     |
| $RDS / nm^{-1}$                                | 1550       | 0.0162 | 0.0087            | 0.0066 | 0.0182                    |
| $PMD/(ps / km^{1/2})$                          | 1550       | 0.04   | 0.03              | 0.04   | 0.04                      |
| $\lambda_{\rm cc}/{ m nm}$                     | _          | ≪1450  | ≪1330             | ≤1360  | ≪1480                     |
| Attenuation/(dB /km)                           | 1550       | 0.21   | 0.20              | 0.22   | 0.21                      |
| Macro bending loss                             | 1550       | <0.04  | <0.03             | <0.04  | <0.05                     |
| with $\not C$ 60 100turns /dB                  | 1625       | <0.04  | <0.03             | <0.04  | <0.05                     |

表 4 制备的光纤用 DCF 模块的 D<sub>1550</sub>, S<sub>1550</sub>, RDS 和 DSCR 值

Table 4  $D_{1550}$ ,  $S_{1550}$ , RDS and DSCR of fabricated fiber with DCF modules

| Fiber | D <sub>1550</sub><br>/[ps /(nm • km)] | $D_{ m s1550}$<br>/[(ps • /(nm <sup>2</sup> • km)] | $ m RDS \ /mm^{-1}$ | DSCI | R /% |
|-------|---------------------------------------|----------------------------------------------------|---------------------|------|------|
| А     | -95                                   | -0.33                                              | 0.00347             | А    | В    |
| В     | -98                                   | -0.63                                              | 0.00643             | —    | —    |
| 0 #   | 4.222                                 | 0.0769                                             | 0.01821             | 19.1 | 35.3 |
| 1#    | 4.425                                 | 0.0715                                             | 0.01616             | 21.5 | 39.8 |
| 2 #   | 6.969                                 | 0.0605                                             | 0.00868             | 40.0 | 74.1 |
| 3 #   | 7.089                                 | 0.0466                                             | 0.00657             | 52.8 | 97.8 |
| G652  | 17                                    | 0.06                                               | 0.00353             | 98.4 | —    |
|       | Conventio                             | nal DCF modules: A W-b                             | and DCF , B H-slope | DCF  |      |

色散补偿光纤(DCF)对光纤色散斜率的补偿能 力可以用相对色散斜率(RDS)来衡量,即色散斜率 补偿效率(DSCR),商用 DCF 的 RDS 一般在 0.002~0.01 nm<sup>-1</sup>之间,提高光纤的 DSCR 就要求 尽量降低光纤的 RDS,可见,降低光纤色散斜率和 适当增加色散值,有利于增大光纤的色散斜率补偿 效率。表4是以较普遍采用的两种 DCF 商用模块 为例,计算在 1550 nm 波长对所制备光纤的色散斜 率补偿效率。可见,1<sup>#</sup>光纤的 DSCR 较 0<sup>#</sup>光纤稍 有提高,2<sup>#</sup>,3<sup>#</sup>光纤的 DSCR 远远高于 1<sup>#</sup>和 0<sup>#</sup>参 照光纤,利用高斜率 DCF,2<sup>#</sup>光纤的补偿效率可以 达到 74%,3<sup>#</sup>光纤的补偿效率达到 97.8%,接近于 常规的 G652 光纤。可见,利用现有的商用补偿模 块,3<sup>#</sup>光纤很容易获得 100%的补偿效率。

光纤熔接特性测量采用腾仓 40 S 熔接机和



图 4 制备的光纤与常规大有效面积光纤色散曲线

Fig. 4 Chromatic dispersion of the fabricated fibers and conventional large effective area fibers

OTDR(PK8000-183)测量设备,采用双向测量熔接 点损耗的方法评价光纤的熔接性能。光纤熔接实验 按照光纤与自身不同批次样品、与同类大有效面积 光纤产品 01\*(国内 Y 公司)、02\*(国外 C 公司)和 标准 G652 光纤四组进行,每组进行 100 次熔接,光 纤熔接参数以 G. 652 为基础,熔接附加损耗分布见 图 5,光纤自身的熔接附加损耗平均值小于 0.03 dB,与01\*和02\*的熔接附加损耗平均值小于 0.05 dB,与标准 G. 652 光纤的熔接附加损耗小于 0.09 dB,显示所得光纤具有非常好的熔接性能。从 熔接实验结果分析,1\*,2\*,3\*光纤之间的熔接损 耗低,表明结构的精确微扰对熔接性能没有特别的 影响,对光纤色散性能产生明显的改进作用。





#### 4 结 论

介绍了一种非零色散位移光纤的结构模型,利 用 MCVD+OVD 工艺成功制得了纤芯有效面积达 到 71 μm<sup>2</sup> 以上的光纤,光纤的光学性能与现有大有 效面积的光纤相当一致,且光纤的色散斜率优化为 0.0715 ps/(nm<sup>2</sup> • km),适用于 C+L 工作波长的 密集波分复用传输系统。针对光纤关键结构区域的 精确微扰,改善了光纤的色散特性,1550 nm 色散斜 率分别减小为0.0605,0.0466 ps/(nm<sup>2</sup> · km),增加 了色散平坦性,光纤的色散补偿斜率效率大幅提高, 零色散波长由 1500 nm 附近移到 1450 nm 以下,支 持 S+C+L 工作波长密集波分复用系统的应用。 所得光纤具有好的光学传输性能、抗弯曲性能和熔 接性能,适用于长距离大容量高速率波分复用通信 传输网络。

研究结果显示,关键结构区域精确微扰是一种 改进光纤性能的有效方法,其效果取决于微扰控制 精度,显然,该方法不限于 MCVD 工艺和非零色散 位移光纤本身,对新型光纤的设计和生产具有积极 的指导意义。

#### 参考文献

1 Zang Qi, Chen Minghua, Shi Ying et al.. Demonstration of 1.6 Tbit/s (40×40 Gbit/s) wavelength division multiplexing 160 km straight line transmission experiments [J]. Chinese J. Laser, 2006, 33(9): 1230~1233

张 琦,陈明华,石颖等. 1.6 Tbit/s (40×40 Gbit/s)光通信传输系统[J]. 中国激光, 2006, **33**(9): 1230~1233

- 2 Belahlou A, Bickham S, Chowdhury D et al.. Fiber design considerations for 40 Gbit/s systems [J]. J. Lightwave Technol., 2002, 20: 2290~2305
- 3 Sun Xueming, Zhang Huijian, Zuo Meng. Impacts of polarization mode dispersion and nonlinear effect on 40 Gbit/s dense wavelength division multiplexing System[J]. Acta Optica Sinica, 2004, 24(10): 1363~1369

孙学明,张慧剑,左 萌. 偏振模色散及非线性效应对 40 Gbit/ s 密集波分复用系统的影响[J]. 光学学报,2004,**24**(10): 1363~1369

4 Ning Tigang, Jian Shuisheng, Fei Li et al.. 4×10 Gbit/s 412 km DWDM dispersion compensation using multiwavelength chirped fiber bragg grating [J]. Acta Optica Sinica, 2002, 22 (7): 839~841

宁提纲,简水生,表 丽. 4×10 Gbit/s 412 km 密集波分复用光 纤光栅色散补偿的实验[J]. 光学学报, 2002, **22**(7): 839~841

- 5 Li Mingjun, Danied A. Optical transmission fiber design evolution[J]. J. Lightwave Technol., 2008, 26: 1079~1092
- 6 Zhao Wenyu, Zhao Jijun, Ji Yuefeng *et al.*. Research on the dispersion problem of high-speed fiber communication system and its compensation[J]. *Telecommun. Science*, 2002, 06: 15~18 赵文玉,赵继军,纪越峰等.高速光通信系统中的色散问题及其补偿研究[J]. 电信科学, 2002, 06: 15~18

7 Xie Xingchu, Chen Xue, Zhou Weiqin *et al.*. Comparison of the DCF dispersion compensation schemes in DWDM system with G. 655[J]. *Opt. Commun. Technol.*, 2008, 2: 25~28 谢幸初,陈 雪,周伟勤等.G. 655光纤 DWDM 系统的 DCF 色 散补偿方案比较[J]. 光通信技术, 2008, 2: 25~28

8 Xu Wei, Duan Gaoyan, Fang Guangqing *et al.*. Analysis of polarization mode dispersion compensation performance for different mod ulation formats [J]. *Acta Optica Sinica*, 2008, 28(2): 226~232

许 玮,段高燕,方光青等.不同调制格式的偏振模色散补偿性能分析[J].光学学报,2008,**28**(2):226~232

9 Qin Xi, Chen Yong, Cao Jihong et al.. Influence of dispersion compensation schemes on phase noise of phase modulation systems[J]. Chinese J. Laser, 2007, 34(1): 62~66 秦 曦,陈 勇,曹继红等.色散补偿方式对相位调制系统中相 位噪声的影响[J].中国激光,2007,**34**(1):62~66

- 10 Chen Xin, Wu Keying, Ma Xiaohong *et al.*. Signal shaping based on phase pre-modulation in fiber transmission systems [J]. *Chinese J. Laser*, 2007, **34**(1): 72~75 陈 新, 吴克瑛, 马晓红 等. 光纤传输系统中基于相位预调制的 信号整型[J]. 中国激光, 2007, **34**(1): 72~75
- 11 Li Jinyan, Li Shiyu, Li Haiqing *et al.*. Design of new S-C-L band single mode fiber[J]. Stusy on Opt. Commun., 2004, 122(2): 45~47

李进延,李诗愈,李海清 等. S-C-L 三波段传输新型单模光纤的 设计和研究[J]. 光通信研究, 2004, **122**(2): 45~47

- 12 Yoshihiro E, Naomi K, Kazumori M *et al.*. Trade-off of dispersion slope and effective area in ultra low slop NZ-DSF for non-dispersion-compensated WDM metro transmission [C]. *OFC/NFOEC*, 2005,11
- 13 Gong Yandong, Jian Shuisheng. Research on large effective area fiber[J]. Opt. Commun. Techn., 1999, 23(2): 126~130 龚岩栋,简水生. 大有效面积光纤的研究[J]. 光通信技术, 1999, 23(2): 126~130
- 14 A. Safaai-Jazi, H. T. Hattori, J. A. Baghdadi. Large effectivearea fibers[C]. SPIE, 1999. Vol. 3666: 30~39
- 15 Zhang Xiaoping, Tian Xiangqin. Analysis of waveguide dispersion characteristics of W I -and W II -type triple-cladding single-mode fibers [J]. Acta Optica Sinica, 2003, 23 (5): 581~586

张晓萍,田祥庆. 三包层 W Ⅰ和 W Ⅱ 型单模光纤波导色散特性的研究[J]. 光学学报,2003,23(5):581~586

- 16 Cheng Yu, Zhao Xiujian, Li Shiyu et al.. Optical fiber waveguide for dispersion control[J]. Optics & Optoelectronic Technology, 2006, 4(5): 43~45 成 煜, 赵修建. 李诗愈等. 控制色散的波导结构分析[J]. 光 学与光电技术, 2006, 4(5): 43~45
- 17 Kato M, Kurokawa K, Miyajima Y. A new design for dispersion shifted fiber with efffective area larger than 100 μm<sup>2</sup> and good bending characteristics[C]. OFC, 1998, 22~27
- 18 Jiang Xiaoqiang, Wang Ruichun. Non-zero dispersion-shifted optical fibers with low nonlinearity for large capacity and longhaul transmission system[J]. Acta Optica Sinica, 2004, 24(7): 893~896 蒋小强,王瑞春. 大容量长距离传输用低非线性效应非零色散位
- 移光纤[J]. 光学学报, 2004, **24**(7): 893~896 19 Zhang Liyong, Wu Xingkun, Yang Rongjin. A differential iteration solution to chromatic dispersion of optical fibers[J]. *Acta Photonica Sinica*, 2007, **11**: 2079~2082 张立永, 吴兴坤, 羊荣金. 光纤色散性能的微分迭代解法[J]. 光 子学报, 2007, **11**: 2079~2082
- 20 Chen Genxiang. An Introduction to Lightwave Technology[M]. Beijing: China Railway Publishing House, 2000. 70~71 陈根祥. 光波技术基础[M]. 北京:中国铁道出版社, 2000. 70~71